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Abstract. Large amounts of ancient documents have become available
in the last years, regarding Argentinian history. This fact turns pos-
sible to find interesting and useful aggregated information. This work
proposes the application of Natural Language Processing, Text Mining
and Visualization tools over Argentinian ancient document repositories.
Conceptual maps and entity networks make up the first target of this
preliminary paper. The first step is the normalization of OCR acquired
books of General Güemes. Exploratory analyses reveal the presence of
manifold spelling errors, due to the OCR acquisition process of the vol-
umes. We propose smart automatic ways for overcoming this issue in the
process of normalization. Besides, a first topic landscape of a subset of
volumes is obtained and analysed, via Topic Modelling tools.
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1 Introduction

In the history of Argentina, many patriots have played key roles on the most
salient events of this country. However, there are many blank spaces or opposite
versions about relevant facts [12]. There are works that tried to determine issues
of the identity of a country in terms of political, economics, social and even
sports analyses [2]. For the purpose of making such tasks more efficient, the fields
of Natural Language Processing (NLP), Text Mining (TM) and Visualization
(VIS) provide tools that allow a faster and more comprehensive processing of the
complete volume of texts available [1]. The work “Güemes Documentado” (GD)
[7] consists of a compilation of documents and explanations about specific topics
and moments on the life of General Mart́ın Miguel de Güemes. The purpose
of this project is to achieve interesting insights about the history of Güemes
and other relevant figures of the Argentinian revolution period. This task is
performed by means of first applying NLP, TM and VIS tools over GD volumes,
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and then extrapolating the resulting insights to other volumes from different
sources.

The first step in the process of fully correct digital text acquisition has been
performed by means of the Tesseract OCR engine application [14] over the GD
available volumes. This step was necessary given the errors present in the raw
digital versions, and the better versions attained with Tesseract open library.
After this task, the text still had many spelling errors, due to the presence of
noise in the physical volumes (spots, stains, scratches, etc.). This issue made an
automated process of spelling correction necessary, given the high amount of er-
rors and the usefulness of such tool for further spelling corrections in texts from
other volumes. The automatic spelling errors correction task has been conducted
in [13] for a general purpose spell correction project and in [9] for a specific con-
text task of automatic spell correction. These works implement special networks
of words for enhancing the process of correction, as explained in [5]. Another
approach for this task is detailed in [6], by means of special Long-Short-Term
Memory (LSTM) networks in a sequence-to-sequence (seq2seq) procedure.

Text Mining methods provide useful tools for the extraction of information
from large volumes of documents. Particularly, the Topic Modeling task derives
a landscape of topics made up by words, and associates every document with
a topic in a probabilistic manner. Latent Dirichlet Allocation (LDA) [3] is a
common method for Topic Modeling. Frequently, LDA is used as an exploratory
data analysis in large volumes of texts. This work shows topic distributions and
interpretations of subsets of documents from the GD volumes.

The present article is structured as follows: The Background and Related
Work section details the techniques and methods used for this project. Then,
preliminary results of the spelling correction and the first landscapes of topics
are presented, accompanied by coherence values of the acquired models. Finally,
conclusions and future work prospects are depicted.

2 Background and Related Work

For the purpose of performing different Text Mining tasks, such as Topic Mod-
eling, a normalization phase is required. Such normalization includes the task of
cleaning-up the documents in a corpus. As there are a plethora of spelling errors
spread along the GD volumes, an automatic process of correction is required.

2.1 Automated Spelling Correction

A naive approach for the correction of spelling errors is the “brute-force” method.
This consists in trying with the whole space of character combinations for find-
ing nearby words in the corpus vocabulary when a spelling error is found. The
concept “near” refers to the edition distance, which could be e.g. Levenshtein
distance.This is excessively expensive in terms of computing efficiency. Besides,
the words determined by the algorithm could be the non-appropriated ones in
each found error.
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A smarter approach is the construction of a Spelling Network (SpellNet) [5].
Such structure consists of a graph of words connected one with each other by
weighted edges, and the weight of each edge is the edition distance between
the words. In [13], for instance, the SpellNet is used for indexing the words
for the search of candidates. Other approaches [6] use LSTM architectures for
developing seq2seq mechanisms for the automatic correction of spelling errors.
In fact, a special competence in the context of the ICDAR 2017 conference was
carried on for this issue. In [4] a list of methods for automatic spelling correction
is shown.

2.2 Topic Modeling with Latent Dirichlet Allocation

Topic Modeling is the task of identifying abstract topics or categories from a
set of documents. Each topic is made up of words, and every document of the
corpus has a membership proportion with each topic. LDA is a probabilistic
method that provides generative models for a predefined number of topics [3].
This method has been used in recommendation systems for scientific articles [15]
or in social networks analysis [8], among other applications.

The evaluation of a topic model achieved by LDA can be done with the
Coherence Value [11]. This value measures degrees of interconnection of the
words inside each topic, providing a proportion number. As such number gets
closer to 1, the obtained model is better.

3 Proposed Framework

Given that GD volumes present many spelling errors in the first textual version,
a Tesseract algorithm implementation was run on the original scanned volumes.
As the selected Tesseract instance reprocesses the text pages priorly as images,
the number of spelling errors decreased in some cases. The first step on automatic
spelling correction is the construction of an exhaustive vocabulary of the well
formed words. For this task, many lemmarios of ancient Spanish were used.

The normalization task of the framework requires the steps of word tok-
enization, remotion of punctuation signs and stopwords, and identifying phrasal
structures such as bigrams, trigrams and so on. This stage, as required for the
first task of Topic Modeling, is targeted for a bag of words representation, i.e.
only accounting the frequency of each word in each document, regardless of the
position of a word.

The data representation is one of the most important issues for tasks as
Topic Modeling. In this case, a basic bag-of-words and a TF-IDF representation
for documents have been adopted. It is known that the TF-IDF representation
provides better topics. For the Topic Modeling task, the LDA method was em-
ployed.

Figure 1 illustrates the instances of the proposed workflow. The raw and
Tesseract versions of the original documents are normalized. Then, the tokens
that correspond to spelling errors are identified using ancient spanish lemmarios.
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These lemmarios play the role of ground truth for the verification of automatic
spelling correction algorithms. Besides, Bag of Words and TF-IDF representa-
tions are built upon the tokens resulting from the normalization phase. Such
representations are employed for the task of Topic Modeling.

Fig. 1. Steps of the proposed workflow, for Automatic Spelling Correction and Topic
Modeling tasks.

4 Results

After the normalization phase, a spelling checker was run on the original and
Tesseract resulting texts. During the spell-checking process, a big lemmario was
built using the collected correct words from GD volumes and combining the
mentioned web lemmarios. The total number of unique tokens and the number
of correct and incorrect tokens for the original and Tesseract-processed versions
are expressed in Table 1. As can be observed there, even though results are better
in most Tesseract cases, sometimes the original version of the volume has less
errors. However, as this is the case for unique tokens, further counts of the total
frequency of errors should be computed. Regarding the spelling errors found in
the acquired texts in both sources, most of them are single characters wrongly
acquired. For instance, characters “ü” and “u” are recognized as two consecutive
instances of character “i”, turning e.g. the word “Güemes” to “Giiemes”, or
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“Jueves” to “Jiieves”. As most errors are of this type, largely the errors should
be automatically rather than manually corrected.

Table 1. Number of unique tokens and spelling errors of original volumes and Tesseract
processed volumes of GD.

GD volume
Original version Tesseract version

Total of tokens Spelling errors Total of tokens Spelling errors

1 20,477 4,992 25,469 1,087

2 18,220 496 18,716 1,385

3 19,522 4,666 24,188 4,336

4 15,918 2,677 18,595 2,376

5 15,944 1,485 17,429 3,312

6 19,565 6,144 25,709 4,337

7 17,910 299 18,209 2,680

8 17,365 2,676 20,041 4,216

9 17,176 5,954 23,130 697

10 18,349 7,577 25,926 2,285

11 19,490 2,977 22,467 3,303

12 15,405 2,420 17,825 2,954

With the normalized versions, Topic Modeling was performed over different
GD document sets by means of LDA. Table 2 shows the results obtained for the
different volumes, taking chapters as documents.

Table 2. Number of chapters, LDA Coherence value and number of topics for the best
LDA configuration in each processed GD volume.

Volume # Chapters LDA Coherence value Number of topics

2 7 0.38 3

3 15 0.28 5

4 28 0.39 4

5 28 0.46 3

6 408 0.36 3

7 6 0.34 5

8 15 0.51 4

9 16 0.41 5

10 13 0.37 3

11 18 0.36 5

12 12 0.51 6

Additional analyses were performed on the volume 2 of GD. For this volume,
when taking chapters as independent documents, the best topic model was for 3
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topics, with a coherence value of 0.38. The sets of the most representative words
for each topic are the following:

– Topic 1: hacer, decir, dar, partir, enemigo, Salta, ciudad, ejército, mandar,
señoŕıa, poblar, provincia, pasar, oficiar, hallar, orden, d́ıa, nombrar, Jujuy,
tomar, gobernar, recibir, acordar, excelencia, poner, general, tropa, noticiar

– Topic 2: hacer, Buenos Aires, decir, dar, presentar, gobernar, excelencia,
servicio, Güemes, oficial, orden, año, enero, fecho, acordar, capital, pasar,
cargar, oficiar, documento, Belgrano, general, Excelent́ısimo señor, causar,
prisionero, mandar, informar

– Topic 3: hacer, partir, decir, enemigo, dar, Salta, provincia, poblar, oficiar,
pasar, hallar, d́ıa, ciudad, gobernar, tomar, ejército, mandar, señoŕıa, presen-
tar, poner, nombrar, bien, Jujuy, noticiar, derecho, acordar, saber, Güemes

The corresponding interpretations for the topics could be:

– Topic 1: Running order of Argentinian Army and Action letter of General
Güemes: Directive of moving the troops for different officers. Transfer of
General Güemes to Buenos Aires due to a supposed love affair. Possible
confrontations with enemy troops.

– Topic 2: Governor election: “Puesto de Marqués” governor election. Güemes
appointment as governor of Salta intendancy. Information about Güemes’
wife.

– Topic 3: Tracking of enemy: Enemy troops moves over north frontier. In-
forming General San Mart́ın about possible confrontations.

As seen in the interpretation, the topic distribution seems to make sense
when the chapters are read. However, when the documents inside each chapter
(letters, service commissions, accounting states, etcetera) are taken into the LDA
process, a more precise classification is attained. 65 documents were extracted
from the volume 2 with the following lists of words describing each one of 5
obtained topics (with a coherence value of 0.44):

– Topic 1: excelencia, Güemes, Excelent́ısimo señor, señoŕıa, servicio, teniente
coronel, general, coronel, ejército, jefe, oficial, Buenos Aires, gobernar, mili-
tar, Martin, mandar, Miguel Güemes, capitán, teniente coronel don Mart́ın,
patrio, postillón, solicitud, marchar, presentar, hacer, testar, informar

– Topic 2: Güemes, merced, cargar, prisionero, Dios guarde, testar, abonar,
enero, gobernar, capitán infanteŕıa, corriente, capital, agregar, dar, decir,
orden, fecho, nuevo, general, presentar, oficial don Mart́ın Miguel, ĺıneo,
conducir, interino, individuo, sueldo, Estado, acordar, resolución

– Topic 3: ciudad, hacer, oficial, decir, hombre, mandar, prisionero, Güemes,
excelencia, coronel, enero, orden, Excelent́ısimo señor, Córdoba, don Pedro,
Teniente, Capitán don, Maŕıa, Comandante, enemigo, caminar, partir, don
Juan, cargar, José, causar, conducir, capitán
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– Topic 4: servicio, excelencia, patrio, teniente, Buenos Aires, orden, Santiago
Estero, decir, servir, Bautista, Güemes, hallar, agostar, solicitud, Tucumán,
López, oficial, general, partir, destinar, ciudad, informar, noviembre, presen-
tar, capital, prisionero, Excelent́ısimo señor, ejército, mayor

– Topic 5: Vuestra Merced, orden, excelencia, dar, señor, patrio, causar, honor,
Martin, presentar, ciudad, mayor, servicio, Ejército, esperar, virtud, oficiar,
señoŕıa, cargar, capital, Santiago, Excelent́ısimo señor, salir, Dios guarde
excelencia años, noticiar, dentro, gobernador, granadero, formar, decir

The interpretation for the previous topics could be:

– Topic 1: Payments due to General Güemes by his services to the army,
because of a financial penalty.

– Topic 2: Letters of Francisco Fernández de la Cruz, asking for Güemes return
to work, and attesting Güemes good behavior.

– Topic 3: Letters about military actions directed by Güemes.
– Topic 4: Transfer of Güemes and prisoners to Santiago del Estero.
– Topic 5: Güemes returning to the service, and apologies from General Bel-

grano.

In this particular case, the granularity level of documents instead of chapters
lends a more accurate topic distribution according to coherence values. However,
the precision of topical models could be different regarding other text structures.
The chapters of GD volumes consist of documents accompanied by narrations of
the author, describing the facts of such documents. This structure can be adding
some noise to the topic models. The case of only extracting documents without
narrations can be free of such noise, thus acquiring higher accuracy.

In Figure 2 two graphic schemes of the topics of GD volume 2 are shown.
The image at the left side corresponds to the 3 topics associated with the model
with the best coherence value, for the distribution by chapters. At the right
side, the image is associated with the best topic model but for the distribution
by the 65 documents inside chapters. The position of the circles representing the
topics of each model reflect the relative distance between every pair of topics.
The overlapping of some topics in the two cases means that such topics could be
merged. Besides, the diameter of a circle is proportionally related to the number
of documents that belong to it. Some topic circles are quite larger than others,
meaning that there is not an even distribution over the number of documents
belonging to each one of them.

Coherence values were computed for several LDA models both for chapters
and extracted documents. Figure 3 shows two charts, the first for chapter dis-
tribution and the second for documents. The first chart shows an important
drop between 3 and 4 topics. As the number of documents is low for the case
of chapters, the best topic model should have 3 topics. However, in the second
chart, 5 topics configuration shows a peak in coherence value. The subsequent
values are not considerably higher. Hence, 5 is a good number of topics for the
corresponding model.

AGRANDA, Simposio Argentino de Ciencia de Datos y Grandes Datos

48JAIIO - AGRANDA - ISSN: 2683-8966 - Página 34



Fig. 2. Topic schemes for LDA over volume 2 of GD. At the left side, LDA topics over
the complete chapters. At the right side, LDA over 65 documents extracted from the
volume.

Fig. 3. Charts of Coherence values for LDA models of GD volume 2. At the left side,
values for chapter distribution (7 documents). At the right side, values for document
distribution (65 documents).
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Apart from the quantitative criterion of the coherence value, the chosen topic
model should provide a clear interpretation of what each topic means, avoiding
overlapping as much as possible. Besides, for the case of chapter distribution of
GD 2, it is important to note that even when there are higher coherence values
for more than 3 topics, the total number of documents in the dataset is 7. Hence
the peaks beyond 5 topics in the chart correspond to models that do not make
sense, as there would be the same number or more topics than documents.

An enhancement on the LDA algorithm was proposed by Andrew McCallum
[10]. This enhancement was implemented on the GD volumes. Specifically for
volume 2, a coherence value of 0.31 was obtained for the corpus of chapters,
when 5 topics were modelled with the basic LDA algorithm. The coherence
value for the same configuration but using LDA Mallet algorithm was increased
to 0.43. This suggests that the topics acquired with LDA Mallet could depict
better distributions, as similar situations were observed for other models.

5 Conclusions and Future Work

As part of a broader project of information extraction from ancient documents of
the Argentinian history, a framework for Text Normalization and Topic Modeling
has been presented. This framework has been applied over a set of volumes of
texts regarding the life of General Mart́ın Miguel de Güemes, an Argentinian
patriot that played a key role on the independence of this country. The results
of this task are very promising. The next step for the project will be related to
the recognition of named entities and the construction of conceptual maps over
them. The purpose of such task is finding interactions among history figures that
allow the discovery of interesting facts not easily findable.

Besides, new automatic spelling correction mechanisms will be studied on
top of other related works. Such task can be enhanced by means of language
models, as e.g. Google n-grams. Another related task for considering as future
work is the detection and correction of malformed sentences, given that every
page break can cause a bad concatenation of words when there are footnotes or
similar structures in the text. A first proposal for overcoming this issue is the
use of a seq2seq approach using LSTM architectures.
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