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Abstract. The elementary shortest-path problem with time-windows and capac-

ity constraints is a problem used for solving vehicle-routing and crew-

scheduling applications. It occurs as a sub-problem used to implicitly generate 

the set of all feasible routes and schedules in the column-generation formulation 

of the vehicle routing problem with time windows and its variations. In the 

problem there is a directed graph with a source node and a destination node, 

and each arc has a cost and a vector of weights specifying its requirements of a 

resource with a finite capacity. A minimum cost source–destination directed 

path is sought such that the total consumption of the resource does not exceed 

the capacity. The problem ins NP-hard in the strong sense. We review integer-

linear formulation to the problem and compare them in order to study their 

computational efficiency.  

Keywords: shortest path problem, alternative formulations, column generation. 

1   Introduction  

The elementary shortest-path problem with time-windows and capacity constraints 

(SPPTWCC) is a problem used for solving vehicle-routing and crew-scheduling appli-

cations. It occurs as a sub-problem used to implicitly generate the set of all feasible 

routes and schedules in the column-generation formulation of the vehicle routing 

problem with time windows and its variations. The SPPTWCC has been shown to be 

NP-hard in the strong sense for graphs containing negative cost cycles by Dror [1]. 

However, the problem remains NP-hard even if the graph is acyclic. The problem is a 

special case of the resources constrained shortest path problem (RCSPP) and several 

types of methods have been proposed to solve it. See e.g., [2, 3]. Several solution ap-

proaches have been developed for solving the SPPTWCC up to optimality. The main 

kinds are: (1) label setting algorithms [4, 5, 6]; (2) label correcting algorithms [7, 8, 

9]; (3) constraints programming [10]; and (4) methods based on branch-and-bound 

[11, 12, 13, 14]. Solution approaches proposed in the literature for solving the RCSPP 
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to optimality are characterized by three main steps: (1) a preprocessing phase, where 

the dimension of the original network is reduced by eliminating nodes and arcs that 

cannot be part of any feasible solution; (2) computation of lower and upper bounds; 

and (3) gap closing step in which the optimal solution is found.  

This work compares two already proposed integer-linear formulations of the 

SPPTWCC with a new one; all of them are solved by branch-and-bound. The purpose 

is to select the most efficient one for embedding it into column generation algorithms 

tailored to solve routing problem variations. Numerical examples for testing alterna-

tive formulations are solved with such aims. 

2   Problem Statement 

Consider a route-network represented by an directed graph G{I  p, A } with I = 

{i1, i2, ..., in} denoting the set of nodes or customers and p representing a source /sink 

node called “depot”. Nodes and the depot are connected by a set of arcs A = {(i, j) / i,j 

 I  p}. Known load and price vectors W = [w1 , w2, …, wn] and  = [1, 2, …n] are 

associated to the customer set I. Loads li must be collected within a time window [ai, 

bi] on each node i  I. The parameters ai stand for the earliest possible start-time of 

the service and parameters bi state the latest possible start-time of the service at any 

node. Travel-costs C = {cij} and travel times  = {tij} are given data for any route 

segment (i,j)  A. Moreover, the service time on node i is denoted sti. For each cargo 

li collected node i  I, an associated price i is accumulated. It is assumed that the 

triangle inequality is satisfied by the travel costs and travel times, i.e. cik +  ckj    cij  and 

tik +  tkj    tij  . The solution to the SPPTWCC problem must: (1) Maximize the net profit 

collected from the selected subset of nodes  I 
opt
 I. This profit is defined as the sum 

of collected prices minus the cumulated cost incurred by traveling arcs to pick them. 

(2) The route must start and end on the depot p. (3) The selected nodes must be visited 

once, so an elemental path is designed. (4) The total collected load must never exceed 

a given capacity q. (5) The time-length used to collect loads and prices must be short-

er than the maximum allowed working time t
max

. (6)The service at every customer site 

i must start within the specified time window [ai, bi]. 

3   Formulations 

The computational hardness of this problem has inspired researchers to develop 

creative formulations that are expected to reduce the size of the enumeration branch-

and-bound tree and the computation times used to solve the problem. The classical 

formulation to this problem dating back to [15] here cited as formulation 1 is written 

as follows: 
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While eq. (1) states the objective function, eq. (2) states the capacity constraint. 

Constraints (3), (4) and (5) are flow constraints resulting in a path from the depot p to 

the subset of visited nodes and back to the depot. Constraints (6) and (7) are timing 

constraints and constraint (8) limits the routing time to a maximum value t
max

. The 

binary variable xij indicates whether arc (i,j)  A belongs to the optimal path (xij = 1) 

or not (xij = 0).  

In formulation 2 [14] the problem was re-modelled in order to reduce the number 

of binary variables. Although the number of binary variables was halved with respect 

to formulation 1, the formulation 2 extensively uses big-M type constraints leading to 

poor linear relaxations within the branch-and-bound tree generated to solve it. The 

problem was remodelled as follows: 
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The objective function (9) is expressed as minimization of the difference between 

the overall travelled distance (CV) and the total quantity of collected prices ( iI iYi). 

Eq. (10) is a capacity constraint equivalent to eq. (2). Eq. (11) is like eq. (3) but states 

flow constraints using time and cost continuous variables. It computes the least travel-

ling costs and times (Ci and Ti) from the depot p to a given node i. Eq. (12) combines 

and reformulates the information from constraints (4) and (6) in order to sequence 

nodes. In this way, let us assume that nodes i and j are both in the optimal path (Yi = Yj 

= 1). Then, the relative ordering of nodes i and j becomes determined by the sequenc-

ing variable Sij. In such a case, node j can be a direct/indirect predecessor of node i or 

viceversa. If node i is visited before j (Sij = 1), the travel cost from node i to node j 

(Cj) must always be larger than Ci by at least cij. Furthermore, the arrival time at node j 

(Tj) should be larger than Ti by at least the sum of the traveling time tij and the service 

time (sti) at the node i. In case node j is visited earlier (Sij = 0) , the reverse statements 

hold-on. Eqs. (13) state that the overall traveling cost (CV) must always be larger than 

the traveling expenses from the depot to any node i (Ci) along the tour by at least the 

amount cip. Also, the total time (TV) required to complete the tour is found by adding 

the sum of both the service time sti at node i and the travel time tip along the edge (i,p) 

to the initial service time at the node last visited i. Since the node last visited is not 

known beforehand, the eq. (13) must be written for every node i  I. Eqs. (14) and 

(15) are time-windows and maximum routing time constraints. 
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In this work, formulation 3 is developed in a way opposite to formulation 2; i.e. us-

ing more binary variables but aiming to achieve tight linear relaxations. The problem 

remodelled according to formulation 3 is written as follows: 
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Since set L is used to order visited nodes along the computed path, objective func-

tion (16) is defined like in eq. (1) but considering l  L as a position indicator for the 

visited node along the optimal path. Eq. (17) is the capacity constraint and eqs. (18), 

(19) and (20) are flow constraints just like eqs. (3), (4) and (5) but taking into account 
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the position indicator l  L. Eq. (21) is a returning constraint to the depot. Eq. (22) set 

the minimum time to reach the first visited position along the path. Eq. (23) computes 

successive positions along the shortest path. While eq. (23.a) allows a waiting time 

before a time windows is open, eq. (23.b) doesn’t consider such an option and is more 

useful for instances no constrained by time-windows. Eq. (24) determines the node 

allocated to each position l  L along the path. Eqs (25) and (26) are respectively 

time-windows and maximum routing time constraints. 

4 Variable Fixing  

Variable fixing is used for reducing the size of a problem. It is a pre-processing 

technique for tightening the formulation before the actual optimization. It consists on 

fixing some variables or/and reducing the interval of values a variable can take. This 

leads to a more compact solution space and consequently to shorter solution times. In 

this way, to pre-fix some sequencing constraints [14] the following sets are defined: 

Set of nodes compatible with node i  I: A node j is said to be compatible with a 

reference node i if can be visited either before or after i. This condition is stated by the 

following set: 

 

    iijjjjijii btstabtstaIjiCom   :)(  
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Set of predecessors of node i  I : A pair of nodes (i,j) is said to be pre-ordered  if 

they must be visited in a certain pre-determined order when time-window constraints 

are satisfied. For instance, node j is said to be a predecessor of node i if j must be vis-

ited before node i. This condition is defined by the following set: 
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Set of successors of node i  I: Node j is said to be a successor of node i if j must 

be visited after node i. Successors of node i are specified by the following set: 
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Set of nodes incompatibles with i  I : Nodes (i,j) that cannot be assigned to the same 

path are called incompatible.  The incompatibility condition for nodes j  i is stated by 

the following set: 

    iijjjjijii btstabtstaIjiInc   :)(  
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The use of the above sets allows fixing some variables of the formulations before 

actually solving it. The following table summarized the pre-fixing decisions that can 

be made a priori on each formulation by using information provided by the above sets. 

 

Table 1. Variable pre-fixing rules 

 Formulation 1 Formulation 2 Formulation 3 

Pr ( )j e i  0; 1ij jix x   1ijS   0; 1l l

ij jix x   

( )j Suc i  1; 0ij jix x   0ijS   1; 0l l

ij jix x   

( )j Inc i  0; 0ij jix x   1i jY Y   0; 0l l

ij jix x   

5  Results and Discussion 

The SPPTWCC occurs as a sub-problem used to implicitly generate the set of all 

feasible routes and schedules in the column-generation (CG) formulation of the vehi-

cle routing problem with time windows (VRPTW) and its realistic variations. This 

section compares the above formulations first by solving some SPPTWCC instances 

and later by solving some benchmark VRPTW instances when the formulations are 

embedded into a simple CG algorithm. The Solomon’s 56 benchmark problems [16] 

has been grouped into C, R and RC categories. C-class problems feature clustered 

customers. Locations in R-class problems were randomly generated while RC-class 

problems comprise clustered and randomly located customers. The data set for every 

category comprises 100 nodes, a depot, similar vehicle capacities but different time-

window distributions. Euclidean distances among customers and traveling times are 

numerically identical. Time windows are hard constraints, service times are independ-

ent of customer requirements and the tour duration cannot exceed a maximum value 

t
max

. The objective is the minimization of the total distance. Smaller problems can be 

generated by selecting the first 25 or 50 nodes of each instance. Benchmark problems 

of each class are further classified into types “1” and “2”, like C1 and C2. Type-1 

problems have narrow time windows and small vehicle capacities while type-2 prob-

lems feature wider time windows and larger vehicle capacities.  

In order to evaluate the performance of our SPPTWCC formulation we first solved 

all R1-type instances with 25 nodes. We selected this group because the different 

time-windows lead to solutions involving a wide span of solution-shapes. I.e. problem 

R101 have a solution with numerous trips involving a few nodes per trip while prob-

lems R104, R108 and R112 have solutions with fewer tours and many nodes per tour. 

In order to “translate” these benchmark problems to the SPPTWCC, we included into 

the data a price vector  = [1, 2, …25] reported in [14]. The vector was obtained by 

generating columns in a CG procedure until reaching the optimal lower bound to the 

problem. Afterwards, we solved the SPPTWCC using the three above formulation 

both without (Configuration 1) and with (Configuration 2) prefixed variables accord-
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ing rules presented on Table 1. The results are summarized in Tables 2 to 4. In these 

tables we reported the optimal integer solution (IS), the linear relaxation (LS) of the 

formulation and the CPU time used to solve the instances both without (Configuration 

1) and with (Configuration 2) prefixed variables. 

 

Table 2. Objective function values and CPU times for the resolution by formula-

tion 1 of the SPPTWCC 25-nodes instances generated from R1 Solomon problems. 
Instance IS Configuration 1 Configuration 2 

  CPU (s) LS CPU (s) LS 

R101 

R102 

R103 

R104 

R105 

R106 

R107 

R108 

R109 

R110 

R111 

     R112 

Average 

-0.09 

-12.48 

-6.65 

-1.96 

-26.26 

-32.83 

-5.38 

-17.40 

-8.09 

-3.40 

-10.19 

-4.23 

0.12 

2.48 

13.06 

29.53 

0.30 

0.62 

7.36 

4.40 

0.50 

11.34 

4.96 

15.80 

7.54 

-257.15 

-239.92 

-144.25 

-115.59 

-171.12 

-177.84 

-106.44 

-114.64 

-128.00 

-140.93 

-107.01 

-80.29 

0.16 

2.34 

12.93 

29.13 

0.20 

0.55 

7.35 

4.24 

0.52 

11.45 

5.01 

16.08 

7.79 

-0.09 

-138.70 

-119.44 

-111.92 

-94.76 

-140.65 

-86.07 

-106.52 

-86.00 

-121.89 

-96.56 

-80.29 

 

Table 3. Objective function values and CPU times for the resolution by formula-

tion 2 of the SPPTWCC 25-nodes instances generated from R1 Solomon problems. 
Instance IS Configuration 1 Configuration 2 

  CPU (s) LS CPU (s) LS 

R101 

R102 

R103 

R104 

R105 

R106 

R107 

R108 

R109 

R110 

R111 

     R112 

Average 

-0.09 

-12.48 

-6.65 

-1.96 

-26.26 

-32.83 

-5.38 

-17.40 

-8.09 

-3.40 

-10.19 

        -4.23 

1.09 

1.51 

14.21 

39.91 

1.90 

4.51 

37.99 

53.57 

8.38 

24.74 

27.44 

1200* 

117.94 

-336.67 

-313.90 

-222.04 

-228.23 

-258.79 

-275.74 

-222.39 

-210.49 

-244.23 

-237.90 

-231.90 

-192.61 

0.34 

0.81 

9.20 

38.13 

0.58 

1.15 

28.91 

35.35 

2.00 

26.97 

13.21 

1200* 

113.05 

-269.09 

-249.29 

-223.84 

-201.45 

-245.84 

-242.83 

-208.13 

-204.97 

-223.26 

-237.90 

-215.58 

-192.61 

 

From the tables we can conclude that: (1) formulation 3 provides the tightest lower 

bound both with and without pre-fixing rules; (2) tight bounds translate, in average, in 

shorter CPU times. Consequently, achieving good bounds seems more important than 

lowering the number of binary variables used to model the problem. (3) Pre-fixing 

rules have a sizable effect in reducing CPU times in all formulations.  

 

 

 

 

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 154



Table 4. Objective function values and CPU times for the resolution by formula-

tion 3 of the SPPTWCC 25-nodes instances generated from R1 Solomon problems. 
Instance IS Configuration 1 Configuration 2 

  CPU (s) LS CPU (s) LS 

R101 

R102 

R103 

R104 

R105 

R106 

R107 

R108 

R109 

R110 

R111 

     R112 

 

-0.09 

-12.48 

-6.65 

-1.96 

-26.26 

-32.83 

-5.38 

-17.40 

-8.09 

-3.40 

-10.19 

         -4.23 

0.91 

2.62 

2.36 

12.81 

1.17 

2.20 

17.75 

2.76 

1.36 

61.67 

15.81 

2.37 

10.31 

-167.46 

-110.39 

-64.56 

-54.28 

-83.32 

-87.21 

-51.03 

-55.68 

-80.24 

-82.19 

-57.99 

-37.48 

0.14 

1.95 

2.01 

11.83 

0.59 

1.67 

19.33 

2.72 

0.59 

39.41 

4.74 

2.59 

7.29 

-0.09 

-65.52 

-46.95 

-49.86 

-55.90 

-69.82 

-44.09 

-47.06 

-60.44 

-78.76 

-55.04 

-37.48 

 

Afterwards, we inserted the above formulations of the SPPTWCC into a simple 

column generation procedure written in GAMS [17] in order to solve Solomon’s R1 

instances with 25 nodes (See Figure 1). Since feasible columns may run into billions 

and it is not possible to realistically generate all columns, the column generation ap-

proach handles this by implicitly considering all columns trough the solution of the 

linear relaxation of the SPP. A portion of all possible routes is enumerated and the 

resulting linear relaxation with this partial set is solved. The solution to this linear 

problem is used to determine if there are any route not included that can reduce the 

objective function value. Using the value of the optimal dual variables with respect to 

the partial routes set, new routes are generated and incorporated and the linear relaxa-

tion is solved again. This continues until one can show that an optimal solution to the 

linear problem cannot be improved with the addition of another route. The logic of 

this algorithm is illustrated on Figure 1. We also collected al solutions with negative 

reduced costs generated per iteration via the Solnpool CPLEX procedure. Al examples 

were solved in a 2.0 GHz 16 GRAM PC. The purpose was to compare times con-

sumed to reach optimality. Results are summarized in Table 5. The table, for all used 

formulations, reports the best found integer solution and the corresponding linear solu-

tion on the pool of generated columns. It also reports the size of the columns pool and 

the CPU time consume by the CG algorithm to solve each instance. From the infor-

mation summarized in Table 4 it can be concluded that faster solutions to the slave 

SPPTWCC subproblem doesn’t automatically translate as faster resolution times via 

CG for the routing problem. In average, formulation 3 performed slightly better than 

the other ones and formulation 2 is, by a little, the worst one. On the other hand, as 

formulation 2 collects more generated routes per iteration, it compensates its slow 

convergence speed to prove optimality.  
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Figure 1: The incomplete optimization algorithm. 

 

Table 5. Solution data for R1 Solomon’s instances with 25 nodes. 
Instance Integer solution Linear solution Columns CPU times (s) 

Formulation 1 
R101 

R102 

R103 

R104 

R105 

R106 

R107 

R108 

R109 

R110 

R111 

R112 

Average 

618.4 

549.7 

455.8 

418.1 

531.7 

466.6 

435.4 

404.4 

442.8 

448.4 

446.2 

409.6 

618.4 

549.7 

455.8 

418.1 

531.7 

462.0 

427.6 

403.6 

442.8 

441.2 

429.0 

394.3 

303 

356 

457 

453 

363 

401 

436 

442 

709 

466 

501 

429 

443 

8.9 

40.4 

223.3 

540.6 

16.2 

50.3 

163.3 

311.9 

43.4 

185.4 

127.7 

312.2 

168.6 

Formulation 2 
R101 

R102 

R103 

R104 

R105 

R106 

R107 

R108 

R109 

R110 

R111 

R112 

Average 

618.4 

549.0 

455.8 

418.1 

531.9 

466.6 

445.4 

424.2 

442.7 

449.3 

451.3 

413.4 

618.4 

547.5 

455.8 

418.1 

531.9 

466.2 

427.7 

403.7 

442.7 

441.1 

428.9 

397.2 

165 

218 

327 

462 

234 

310 

544 

548 

536 

321 

389 

542 

383 

5.1 

10.5 

86.2 

424.9 

43.6 

36.8 

351.1 

553.1 

79.8 

336.6 

180.4 

461.2 

255.8 
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Formulation 3 
R101 

R102 

R103 

R104 

R105 

R106 

R107 

R108 

R109 

R110 

R111 

R112 

Average 

618.4 

548.2 

455.8 

418.1 

531.6 

471.2 

429.3 

404.9 

442.7 

445.3 

429.8 

410.5 

618.4 

547.5 

455.8 

418.1 

531.6 

465.6 

427.6 

403.6 

442.7 

445.3 

429.8 

394.2 

163 

225 

254 

383 

201 

295 

348 

303 

437 

289 

412 

267 

298 

7.9 

87.5 

225.8 

234.5 

15.4 

34.1 

215.4 

225.3 

104.2 

252.9 

231.6 

201.5 

153.1 

Also, it seems that formulation 3 performs better in loosely time-windows constrained 

problems while formulation 2 performs better in tightly time-windows constrained 

instances. Formulation 1 performs quite well in the widest spam of instances-

topologies. 

5  Conclusions 

In this work, we developed a new MILP formulation for the SPPTWCC and per-

formed some numerical studies to compare its computational efficiency with respect 

of two previously presented formulations. The problem is useful in the context of CG 

methods designed to solve vehicle routing problems and its realistic variations. It is 

important to highlight that the MILP formulations of the slave subproblem usually 

don’t compete with algorithms based on label setting procedures but to complement 

them in a CG algorithm calling both types of “routes generators”. We should first use 

the label-setting algorithm and then, whenever the branching mechanism demands a 

few but hard to find columns we should switch to the best MILP formulation.   

We can conclude that there is not “a best” MILP formulation and the performance 

of alternative models depends on tightness and number of time windows. I.e. in aver-

age formulation 3 performed slightly better than the other ones and formulation 2 is, 

by a little, the worst one. Formulation 1 collects more generated routes per iteration. 

Formulation 3 performs better in loosely time-windows constrained problems while 

formulation 2 performs better in tightly time-windows constrained instances. Formula-

tion 1 performs quite well in the widest spam of instances-topologies. 
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