
On Alternative Formulations to the Shortest Path

Problem with Time Windows and Capacity Constraints

Ignacio Vitale1 and Rodolfo Dondo2

1 Facultad de Ingeniería Química, U.N.L, Santiago del Estero 2829,

3000 Santa Fe, Argentina
vitalenacho@gmail.com

2Instituto de Desarrollo Tecnológico para la Industria Química (U.N.L. - Conicet), Güemes

3450, 3000 Santa Fe, Argentina
rdondo@santafe-conicet.gov.ar

Abstract. The elementary shortest-path problem with time-windows and capac-

ity constraints is a problem used for solving vehicle-routing and crew-

scheduling applications. It occurs as a sub-problem used to implicitly generate

the set of all feasible routes and schedules in the column-generation formulation

of the vehicle routing problem with time windows and its variations. In the

problem there is a directed graph with a source node and a destination node,

and each arc has a cost and a vector of weights specifying its requirements of a

resource with a finite capacity. A minimum cost source–destination directed

path is sought such that the total consumption of the resource does not exceed

the capacity. The problem ins NP-hard in the strong sense. We review integer-

linear formulation to the problem and compare them in order to study their

computational efficiency.

Keywords: shortest path problem, alternative formulations, column generation.

1 Introduction

The elementary shortest-path problem with time-windows and capacity constraints

(SPPTWCC) is a problem used for solving vehicle-routing and crew-scheduling appli-

cations. It occurs as a sub-problem used to implicitly generate the set of all feasible

routes and schedules in the column-generation formulation of the vehicle routing

problem with time windows and its variations. The SPPTWCC has been shown to be

NP-hard in the strong sense for graphs containing negative cost cycles by Dror [1].

However, the problem remains NP-hard even if the graph is acyclic. The problem is a

special case of the resources constrained shortest path problem (RCSPP) and several

types of methods have been proposed to solve it. See e.g., [2, 3]. Several solution ap-

proaches have been developed for solving the SPPTWCC up to optimality. The main

kinds are: (1) label setting algorithms [4, 5, 6]; (2) label correcting algorithms [7, 8,

9]; (3) constraints programming [10]; and (4) methods based on branch-and-bound

[11, 12, 13, 14]. Solution approaches proposed in the literature for solving the RCSPP

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 147

mailto:rdondo@santafe-conicet.gov.ar

to optimality are characterized by three main steps: (1) a preprocessing phase, where

the dimension of the original network is reduced by eliminating nodes and arcs that

cannot be part of any feasible solution; (2) computation of lower and upper bounds;

and (3) gap closing step in which the optimal solution is found.

This work compares two already proposed integer-linear formulations of the

SPPTWCC with a new one; all of them are solved by branch-and-bound. The purpose

is to select the most efficient one for embedding it into column generation algorithms

tailored to solve routing problem variations. Numerical examples for testing alterna-

tive formulations are solved with such aims.

2 Problem Statement

Consider a route-network represented by an directed graph G{I  p, A } with I =

{i1, i2, ..., in} denoting the set of nodes or customers and p representing a source /sink

node called “depot”. Nodes and the depot are connected by a set of arcs A = {(i, j) / i,j

 I  p}. Known load and price vectors W = [w1 , w2, …, wn] and  = [1, 2, …n] are

associated to the customer set I. Loads li must be collected within a time window [ai,

bi] on each node i  I. The parameters ai stand for the earliest possible start-time of

the service and parameters bi state the latest possible start-time of the service at any

node. Travel-costs C = {cij} and travel times  = {tij} are given data for any route

segment (i,j)  A. Moreover, the service time on node i is denoted sti. For each cargo

li collected node i  I, an associated price i is accumulated. It is assumed that the

triangle inequality is satisfied by the travel costs and travel times, i.e. cik + ckj  cij and

tik + tkj  tij . The solution to the SPPTWCC problem must: (1) Maximize the net profit

collected from the selected subset of nodes I
opt
 I. This profit is defined as the sum

of collected prices minus the cumulated cost incurred by traveling arcs to pick them.

(2) The route must start and end on the depot p. (3) The selected nodes must be visited

once, so an elemental path is designed. (4) The total collected load must never exceed

a given capacity q. (5) The time-length used to collect loads and prices must be short-

er than the maximum allowed working time t
max

. (6)The service at every customer site

i must start within the specified time window [ai, bi].

3 Formulations

The computational hardness of this problem has inspired researchers to develop

creative formulations that are expected to reduce the size of the enumeration branch-

and-bound tree and the computation times used to solve the problem. The classical

formulation to this problem dating back to [15] here cited as formulation 1 is written

as follows:

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 148

Min

i ij ij

i I j I p

c x
  

 
  
 

 

subject to

:

i ij

i I j I p i j

w x q
   

 





Ii

pix 1

: :

ki ik

k I p k i k I p k i

x x
     

 





Ii

ipx 1

jijTijii TxMtstT )1(













ii

ii

bT

Ta

maxttstT ipii 

 0,1ijx 

0iT 

i I 

(,) :i j I i j  

Ii

Ii

(1)

(2)

(3)

 (4)

(5)

 (6)

(7)

(8)

While eq. (1) states the objective function, eq. (2) states the capacity constraint.

Constraints (3), (4) and (5) are flow constraints resulting in a path from the depot p to

the subset of visited nodes and back to the depot. Constraints (6) and (7) are timing

constraints and constraint (8) limits the routing time to a maximum value t
max

. The

binary variable xij indicates whether arc (i,j)  A belongs to the optimal path (xij = 1)

or not (xij = 0).

In formulation 2 [14] the problem was re-modelled in order to reduce the number

of binary variables. Although the number of binary variables was halved with respect

to formulation 1, the formulation 2 extensively uses big-M type constraints leading to

poor linear relaxations within the branch-and-bound tree generated to solve it. The

problem was remodelled as follows:

Min











Ii

iiYCV 

subject to

(9)

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 149





Ii

ii qYw













ipi

ipi

tT

cC

   
   

 
  




































jicijTijjji

jicijcijji

jicijTijiij

jicijcijij

YYMSMtstTT

YYMSMcCC

YYMSMtstTT

YYMSMcCC

2

2

21

21

 

 











icijii

iciji

YMtstTTV

YMcCCV

1

1













ii

ii

bT

Ta

maxtTV 

 1,0, iji SY

, , , 0i iC T CV TV 

Ii

jiIji  :,

Ii

Ii

 (10)

(11)

(12)

(13)

(14)

 (15)

The objective function (9) is expressed as minimization of the difference between

the overall travelled distance (CV) and the total quantity of collected prices ( iI iYi).

Eq. (10) is a capacity constraint equivalent to eq. (2). Eq. (11) is like eq. (3) but states

flow constraints using time and cost continuous variables. It computes the least travel-

ling costs and times (Ci and Ti) from the depot p to a given node i. Eq. (12) combines

and reformulates the information from constraints (4) and (6) in order to sequence

nodes. In this way, let us assume that nodes i and j are both in the optimal path (Yi = Yj

= 1). Then, the relative ordering of nodes i and j becomes determined by the sequenc-

ing variable Sij. In such a case, node j can be a direct/indirect predecessor of node i or

viceversa. If node i is visited before j (Sij = 1), the travel cost from node i to node j

(Cj) must always be larger than Ci by at least cij. Furthermore, the arrival time at node j

(Tj) should be larger than Ti by at least the sum of the traveling time tij and the service

time (sti) at the node i. In case node j is visited earlier (Sij = 0) , the reverse statements

hold-on. Eqs. (13) state that the overall traveling cost (CV) must always be larger than

the traveling expenses from the depot to any node i (Ci) along the tour by at least the

amount cip. Also, the total time (TV) required to complete the tour is found by adding

the sum of both the service time sti at node i and the travel time tip along the edge (i,p)

to the initial service time at the node last visited i. Since the node last visited is not

known beforehand, the eq. (13) must be written for every node i  I. Eqs. (14) and

(15) are time-windows and maximum routing time constraints.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 150

In this work, formulation 3 is developed in a way opposite to formulation 2; i.e. us-

ing more binary variables but aiming to achieve tight linear relaxations. The problem

remodelled according to formulation 3 is written as follows:

Min

1 1

() ()l l l

pi pi ij ij i ip ip i

p P i I l i I j I l L p P i I l

x c x c x c 
        

     

subject to

l

i ij

i I j I P l L

w x q
   

  

1

1l

pi

p P l

x
 



' 1 ' 1

l l l

ji ij ip

j I l l j I l l p P

x x x
      

   

1

l l

pi ip

i I l i I l L

x x
   

 

1l l

ij ip

j I l L p P l L

x x
   

  

l

l pi pi

p P i I

T x t
 



'

1 ' 1

()

() (1)

l l

l pi pi ij i ij

p P i I l i I j I l l

l l

l j ji i ji T ji

i I i I

T x t x st t

T T x st t M x

      

 

 

   
 
 

     
 

 

 

(1)l l

i l T ij ip

j I p P

T T M x x
 

    













ii

ii

bT

Ta

max()l

i ip i ip

p P l L

T x st t t
 

  

i I 

, 1i I l L   

p P 

i I 

1l 

1l L 

,i I l L  

Ii

Ii

(16)

(17)

(18)

(19)

(20)

 (21)

 (22)

(23.a)

(23.b)

 (24)

(25)

(26)

 0,1l

ijx 

0iT 

Since set L is used to order visited nodes along the computed path, objective func-

tion (16) is defined like in eq. (1) but considering l  L as a position indicator for the

visited node along the optimal path. Eq. (17) is the capacity constraint and eqs. (18),

(19) and (20) are flow constraints just like eqs. (3), (4) and (5) but taking into account

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 151

the position indicator l  L. Eq. (21) is a returning constraint to the depot. Eq. (22) set

the minimum time to reach the first visited position along the path. Eq. (23) computes

successive positions along the shortest path. While eq. (23.a) allows a waiting time

before a time windows is open, eq. (23.b) doesn’t consider such an option and is more

useful for instances no constrained by time-windows. Eq. (24) determines the node

allocated to each position l  L along the path. Eqs (25) and (26) are respectively

time-windows and maximum routing time constraints.

4 Variable Fixing

Variable fixing is used for reducing the size of a problem. It is a pre-processing

technique for tightening the formulation before the actual optimization. It consists on

fixing some variables or/and reducing the interval of values a variable can take. This

leads to a more compact solution space and consequently to shorter solution times. In

this way, to pre-fix some sequencing constraints [14] the following sets are defined:

Set of nodes compatible with node i  I: A node j is said to be compatible with a

reference node i if can be visited either before or after i. This condition is stated by the

following set:

    iijjjjijii btstabtstaIjiCom  :)(

Ii (27)

Set of predecessors of node i  I : A pair of nodes (i,j) is said to be pre-ordered if

they must be visited in a certain pre-determined order when time-window constraints

are satisfied. For instance, node j is said to be a predecessor of node i if j must be vis-

ited before node i. This condition is defined by the following set:

    iijjjjijii btstabtstaIjie  :)(Pr

Ii

(28)

Set of successors of node i  I: Node j is said to be a successor of node i if j must

be visited after node i. Successors of node i are specified by the following set:

    iijjjjijii btstabtstaIjiSuc  :)(

Ii

(29)

Set of nodes incompatibles with i  I : Nodes (i,j) that cannot be assigned to the same

path are called incompatible. The incompatibility condition for nodes j  i is stated by

the following set:

    iijjjjijii btstabtstaIjiInc  :)(

Ii

(30)

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 152

The use of the above sets allows fixing some variables of the formulations before

actually solving it. The following table summarized the pre-fixing decisions that can

be made a priori on each formulation by using information provided by the above sets.

Table 1. Variable pre-fixing rules

 Formulation 1 Formulation 2 Formulation 3

Pr ()j e i 0; 1ij jix x  1ijS  0; 1l l

ij jix x 

()j Suc i 1; 0ij jix x  0ijS  1; 0l l

ij jix x 

()j Inc i 0; 0ij jix x  1i jY Y  0; 0l l

ij jix x 

5 Results and Discussion

The SPPTWCC occurs as a sub-problem used to implicitly generate the set of all

feasible routes and schedules in the column-generation (CG) formulation of the vehi-

cle routing problem with time windows (VRPTW) and its realistic variations. This

section compares the above formulations first by solving some SPPTWCC instances

and later by solving some benchmark VRPTW instances when the formulations are

embedded into a simple CG algorithm. The Solomon’s 56 benchmark problems [16]

has been grouped into C, R and RC categories. C-class problems feature clustered

customers. Locations in R-class problems were randomly generated while RC-class

problems comprise clustered and randomly located customers. The data set for every

category comprises 100 nodes, a depot, similar vehicle capacities but different time-

window distributions. Euclidean distances among customers and traveling times are

numerically identical. Time windows are hard constraints, service times are independ-

ent of customer requirements and the tour duration cannot exceed a maximum value

t
max

. The objective is the minimization of the total distance. Smaller problems can be

generated by selecting the first 25 or 50 nodes of each instance. Benchmark problems

of each class are further classified into types “1” and “2”, like C1 and C2. Type-1

problems have narrow time windows and small vehicle capacities while type-2 prob-

lems feature wider time windows and larger vehicle capacities.

In order to evaluate the performance of our SPPTWCC formulation we first solved

all R1-type instances with 25 nodes. We selected this group because the different

time-windows lead to solutions involving a wide span of solution-shapes. I.e. problem

R101 have a solution with numerous trips involving a few nodes per trip while prob-

lems R104, R108 and R112 have solutions with fewer tours and many nodes per tour.

In order to “translate” these benchmark problems to the SPPTWCC, we included into

the data a price vector  = [1, 2, …25] reported in [14]. The vector was obtained by

generating columns in a CG procedure until reaching the optimal lower bound to the

problem. Afterwards, we solved the SPPTWCC using the three above formulation

both without (Configuration 1) and with (Configuration 2) prefixed variables accord-

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 153

ing rules presented on Table 1. The results are summarized in Tables 2 to 4. In these

tables we reported the optimal integer solution (IS), the linear relaxation (LS) of the

formulation and the CPU time used to solve the instances both without (Configuration

1) and with (Configuration 2) prefixed variables.

Table 2. Objective function values and CPU times for the resolution by formula-

tion 1 of the SPPTWCC 25-nodes instances generated from R1 Solomon problems.
Instance IS Configuration 1 Configuration 2

 CPU (s) LS CPU (s) LS

R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

 R112

Average

-0.09

-12.48

-6.65

-1.96

-26.26

-32.83

-5.38

-17.40

-8.09

-3.40

-10.19

-4.23

0.12

2.48

13.06

29.53

0.30

0.62

7.36

4.40

0.50

11.34

4.96

15.80

7.54

-257.15

-239.92

-144.25

-115.59

-171.12

-177.84

-106.44

-114.64

-128.00

-140.93

-107.01

-80.29

0.16

2.34

12.93

29.13

0.20

0.55

7.35

4.24

0.52

11.45

5.01

16.08

7.79

-0.09

-138.70

-119.44

-111.92

-94.76

-140.65

-86.07

-106.52

-86.00

-121.89

-96.56

-80.29

Table 3. Objective function values and CPU times for the resolution by formula-

tion 2 of the SPPTWCC 25-nodes instances generated from R1 Solomon problems.
Instance IS Configuration 1 Configuration 2

 CPU (s) LS CPU (s) LS

R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

 R112

Average

-0.09

-12.48

-6.65

-1.96

-26.26

-32.83

-5.38

-17.40

-8.09

-3.40

-10.19

 -4.23

1.09

1.51

14.21

39.91

1.90

4.51

37.99

53.57

8.38

24.74

27.44

1200*

117.94

-336.67

-313.90

-222.04

-228.23

-258.79

-275.74

-222.39

-210.49

-244.23

-237.90

-231.90

-192.61

0.34

0.81

9.20

38.13

0.58

1.15

28.91

35.35

2.00

26.97

13.21

1200*

113.05

-269.09

-249.29

-223.84

-201.45

-245.84

-242.83

-208.13

-204.97

-223.26

-237.90

-215.58

-192.61

From the tables we can conclude that: (1) formulation 3 provides the tightest lower

bound both with and without pre-fixing rules; (2) tight bounds translate, in average, in

shorter CPU times. Consequently, achieving good bounds seems more important than

lowering the number of binary variables used to model the problem. (3) Pre-fixing

rules have a sizable effect in reducing CPU times in all formulations.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 154

Table 4. Objective function values and CPU times for the resolution by formula-

tion 3 of the SPPTWCC 25-nodes instances generated from R1 Solomon problems.
Instance IS Configuration 1 Configuration 2

 CPU (s) LS CPU (s) LS

R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

 R112

-0.09

-12.48

-6.65

-1.96

-26.26

-32.83

-5.38

-17.40

-8.09

-3.40

-10.19

 -4.23

0.91

2.62

2.36

12.81

1.17

2.20

17.75

2.76

1.36

61.67

15.81

2.37

10.31

-167.46

-110.39

-64.56

-54.28

-83.32

-87.21

-51.03

-55.68

-80.24

-82.19

-57.99

-37.48

0.14

1.95

2.01

11.83

0.59

1.67

19.33

2.72

0.59

39.41

4.74

2.59

7.29

-0.09

-65.52

-46.95

-49.86

-55.90

-69.82

-44.09

-47.06

-60.44

-78.76

-55.04

-37.48

Afterwards, we inserted the above formulations of the SPPTWCC into a simple

column generation procedure written in GAMS [17] in order to solve Solomon’s R1

instances with 25 nodes (See Figure 1). Since feasible columns may run into billions

and it is not possible to realistically generate all columns, the column generation ap-

proach handles this by implicitly considering all columns trough the solution of the

linear relaxation of the SPP. A portion of all possible routes is enumerated and the

resulting linear relaxation with this partial set is solved. The solution to this linear

problem is used to determine if there are any route not included that can reduce the

objective function value. Using the value of the optimal dual variables with respect to

the partial routes set, new routes are generated and incorporated and the linear relaxa-

tion is solved again. This continues until one can show that an optimal solution to the

linear problem cannot be improved with the addition of another route. The logic of

this algorithm is illustrated on Figure 1. We also collected al solutions with negative

reduced costs generated per iteration via the Solnpool CPLEX procedure. Al examples

were solved in a 2.0 GHz 16 GRAM PC. The purpose was to compare times con-

sumed to reach optimality. Results are summarized in Table 5. The table, for all used

formulations, reports the best found integer solution and the corresponding linear solu-

tion on the pool of generated columns. It also reports the size of the columns pool and

the CPU time consume by the CG algorithm to solve each instance. From the infor-

mation summarized in Table 4 it can be concluded that faster solutions to the slave

SPPTWCC subproblem doesn’t automatically translate as faster resolution times via

CG for the routing problem. In average, formulation 3 performed slightly better than

the other ones and formulation 2 is, by a little, the worst one. On the other hand, as

formulation 2 collects more generated routes per iteration, it compensates its slow

convergence speed to prove optimality.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 155

Figure 1: The incomplete optimization algorithm.

Table 5. Solution data for R1 Solomon’s instances with 25 nodes.
Instance Integer solution Linear solution Columns CPU times (s)

Formulation 1
R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

R112

Average

618.4

549.7

455.8

418.1

531.7

466.6

435.4

404.4

442.8

448.4

446.2

409.6

618.4

549.7

455.8

418.1

531.7

462.0

427.6

403.6

442.8

441.2

429.0

394.3

303

356

457

453

363

401

436

442

709

466

501

429

443

8.9

40.4

223.3

540.6

16.2

50.3

163.3

311.9

43.4

185.4

127.7

312.2

168.6

Formulation 2
R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

R112

Average

618.4

549.0

455.8

418.1

531.9

466.6

445.4

424.2

442.7

449.3

451.3

413.4

618.4

547.5

455.8

418.1

531.9

466.2

427.7

403.7

442.7

441.1

428.9

397.2

165

218

327

462

234

310

544

548

536

321

389

542

383

5.1

10.5

86.2

424.9

43.6

36.8

351.1

553.1

79.8

336.6

180.4

461.2

255.8

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 156

Formulation 3
R101

R102

R103

R104

R105

R106

R107

R108

R109

R110

R111

R112

Average

618.4

548.2

455.8

418.1

531.6

471.2

429.3

404.9

442.7

445.3

429.8

410.5

618.4

547.5

455.8

418.1

531.6

465.6

427.6

403.6

442.7

445.3

429.8

394.2

163

225

254

383

201

295

348

303

437

289

412

267

298

7.9

87.5

225.8

234.5

15.4

34.1

215.4

225.3

104.2

252.9

231.6

201.5

153.1

Also, it seems that formulation 3 performs better in loosely time-windows constrained

problems while formulation 2 performs better in tightly time-windows constrained

instances. Formulation 1 performs quite well in the widest spam of instances-

topologies.

5 Conclusions

In this work, we developed a new MILP formulation for the SPPTWCC and per-

formed some numerical studies to compare its computational efficiency with respect

of two previously presented formulations. The problem is useful in the context of CG

methods designed to solve vehicle routing problems and its realistic variations. It is

important to highlight that the MILP formulations of the slave subproblem usually

don’t compete with algorithms based on label setting procedures but to complement

them in a CG algorithm calling both types of “routes generators”. We should first use

the label-setting algorithm and then, whenever the branching mechanism demands a

few but hard to find columns we should switch to the best MILP formulation.

We can conclude that there is not “a best” MILP formulation and the performance

of alternative models depends on tightness and number of time windows. I.e. in aver-

age formulation 3 performed slightly better than the other ones and formulation 2 is,

by a little, the worst one. Formulation 1 collects more generated routes per iteration.

Formulation 3 performs better in loosely time-windows constrained problems while

formulation 2 performs better in tightly time-windows constrained instances. Formula-

tion 1 performs quite well in the widest spam of instances-topologies.

References

1. Dror M. Note on the complexity of the shortest path models for column generation in

VRPTW. Oper. Res. (1994);42:977–8.

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 157

2. Irnich S, and Desaulniers G. Shortest path problems with resource constraints. In:

Desaulniers G,Desrosiers J,Solomon M, editors. Columngeneration. US: Springer

(2005).

3. Pugliese L, snd GuerrieroF. A survey of resource constrained shortest path problems:

exact solution approaches.Networks (2013) ;62:183–200.

4. Desrochers M. and Soumis, F. A generalized permanent labelling algorithm for the

shortest path problems with time windows, INFOR 26 (1988), 193–214.

5. Gallo G. and Pallottino S. Shortest path algorithms, Ann Oper Res 13 (1988), 1–79.

6. Denardo E. and Fox B. Shortest-route methods: reaching, pruning and buckets, Oper

Res 27 (1979), 161–186.

7. Di Puglia Pugliese L. and Guerriero F. A computational study of solution approaches

for the resource constrained elementary shortest path problem, Ann Oper Res (2012)

201, 131–157.

8. Powell W. and Chen Z. A generalized threshold algorithm for the shortest path prob-

lem with time windows. Network design: Connectivity and facilities, P.M. Panalos

and D. Du (Editors), American Mathematical Soc., Providence, RI, (1998) 303–318.

9. Glover F., Glover R., and Klingman D. The threshold shortest path algorithm, Net-

works 14 (1984), 25–36.

10. Rousseau L., Gendreau M. and Pesant G. Using constraint-based operators to solve

the vehicle routing problem with time windows. Journal of heuristics. (2002) 8 (1),

43-58.

11. Beasley J. and Christofides N. An algorithm for the resource constrained shortest path

problem, Networks 19 (1989), 379–394.

12. Carlyle W., Royset J., and Wood R. Lagrangian relaxation and enumeration for solv-

ing constrained shortest path problems, Networks 52 (2008), 256–270.

13. Muhandiramge R. and Boland N.. Simultaneous solution of Lagrangean dual prob-

lems interleaved with preprocessing for the weight constrained shortest path problem,

Networks 53 (2009), 358–381.

14. Dondo, R. A New MILP Formulation to the Shortest Path Problem with Time Win-

dows and Capacity Constraints. Latin American Applied Research, (2012) 42, 257-

265.

15. Desrochers M.; Desrosiers J. and Solomon M. A New Optimization Algorithm for the

Vehicle Routing Problem with Time Windows. Operations Research, (1992) 40 (2).

342-354.

16. Solomon, M.. Algorithms for the Vehicle Routing and Scheduling Problem With

Time Window Constraints. Opns. Res. (1987) 35, 254-265.

17. Kalvelagen, E. Columns generation with GAMS (2011). Downloaded from

http://amsterdamoptimization.com/pdf/colgen.pdf

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

48JAIIO - SIIIO - ISSN: 2618-3277 - Página 158

